

27

1

A Cooperative Game of
Invention and Communication

A fruitful way to think about software development is to consider it as a
cooperative game of invention and communication.

The first section asks the question, “What would the experience of
developing software be like if it were not software we were developing?”
The purpose of the section is to get some distance from the subject in
order to explore other ways of talking about it.

The second section reviews the broad spectrum of activities called
games and finds the place of software development within that spec-
trum. If you are already familiar with zero-sum, positional, cooperative,
finite, and infinite games, you might skim rapidly through the first part
of this section. The section continues with a comparison of software
development with another team-cooperative game—rock climbing—and
two common comparison partners, engineering and model building.

The third section examines the idea of software development as a
cooperative game of invention and communication more closely. It con-
siders the primary goal of the game—delivering working software—and
the secondary goal—or residue of the game—setting up for the next
game. The next game is altering or replacing the system, or creating a
neighboring system.

The final section in the chapter relates the ideas to everyday life.

08_ASD_ch01.fm Page 27 Monday, September 25, 2006 11:05 AM

28

A Cooperative Game of Invention and Communication

S

OFTWARE

AND

 P

OETRY

 . 29

S

OFTWARE

AND

 G

AMES

. 31

Kinds of Games . 31
Software and Rock Climbing. 32
A Game of Invention and Communication 34
Software and Engineering . 35
Software and Model Building 36

A S

ECOND

 L

OOK

AT

THE

 C

OOPERATIVE

 G

AME

 37

Programmers as Communications Specialists . . . 37
Gaming Faster . 38
Markers and Props . 39
Diminishing Returns. 39
Sufficiency for the Primary Goal. 40
Sufficiency in the Residue . 42
A Game within a Game . 43
Open-Source Development 43

W

HAT

 S

HOULD

 T

HIS

 M

EAN

TO

 M

E

? 44

08_ASD_ch01.fm Page 28 Monday, September 25, 2006 11:05 AM

Software and Poetr y •

29

S

O F T W A R E

A N D

 P

O E T R Y

What if software development were not
software development? Then what would
it be, and what would the experience be
like? I suggest that it is like a community
writing epic poetry together. I make this
comparison not because I think you have
experience in community poetry writing,
but because I think you don’t. Your imagi-
nation will supply you with the sorts of
contradictions I am interested in evoking.

Imagine 50 people getting together to
write a 20,000-line epic poem on cost and
time. What would you expect to find?
Lots of arguments, for one thing. People
trying to be creative, trying to do their
best, without enough talent, time, or
resources.

Who are the players in this drama?
First, the people who ordered the poem.
What do they want? They want some-
thing they can use to amuse themselves or
impress their friends, not too expensive,
and

soon

.
Next we have the key poem designers.
As you might imagine, this began as a

one-person project. But our mythical poet
found herself promising

much

more than
she could deliver in the given time frame.
So she asked a few friends to help. They
designated her the lead poet and poem
designer. She blocked out the theme and
the poem’s sequencing.

Her friends started to help, but then
they ran into problems with synchroniz-
ing and communicating their work. It also
turned out that they couldn’t get it all
done in time. So they added a couple of
clerical people, more friends, and, in des-
peration, even neighbors. The friends and

neighbors were not real poets, of course.
So our lead designers blocked out sec-
tions of the poem that would not require
too much talent.

What do you think happened?
There was good news: One person was

good at descriptive passages, another was
good at the gory bits, and another was
good at passages about people. No one
was good at emotion except the lead poet,
who by now was pulling her hair out
because she didn’t have time to write

poetry

, she was so busy coordinating,
checking, and delegating.

Actually, a couple of people couldn’t
leave well enough alone. Two of them
wrote pages and pages and pages of
material describing minor protagonists,
and our lead poet could not get them to
cut it down to size. Another few kept
rewriting and revising their work, never
satisfied with the result. She wanted them
to move on to other passages, but they
just wouldn’t stop fiddling with their first
sections.

As time progressed, the group got des-
perate and added more people. The trou-
ble was that they were running out of
money and couldn’t really afford all these
people. Communications were horrible,
no one had the current copy of the poem,
and no one knew the actual state of the
poem.

Let’s give this story a happy ending . . .
As luck would have it, they engaged a

wonderfully efficient administrator who
arranged for a plan of the overall poem,
an inventory of each person’s skills, a
time frame and communication schedule

08_ASD_ch01.fm Page 29 Monday, September 25, 2006 11:05 AM

30

• Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

for each part, standards for versioning
and merging pieces of the poem, plus sec-
retarial and other technical services.

They delivered the poem to satisfied
clients, well over budget, of course. And
the lead poet had to go on vacation to
restore her senses. She swore she would
never do this again (but we know better).

Groups surely have gotten together to
write a long poem together. And I am sure
that they ran into most of the issues that
software developers run into: tempera-
mental geniuses and average workers,
hard requirements, and communication
pressures. Humans working together,
building something they don’t quite
understand. Done well, the result is
breathtaking; done poorly, dross.

B

ALANCE

IN

 S

OFTWARE

 D

ESIGN

As I sat in on a design review of an object-
oriented system, one of the reviewers sug-
gested an alternate design approach.

The lead designer replied that the alter-
native would not be as

balanced

, would not

flow

 as well as the original.
Thus, even in hard-core programming

circles, we find designers discussing designs
in terms of balance and flow.

Software developers have a greater burden
than our hypothetical poets have: logic.

The result must not only rhyme; it must
behave properly—“accurately enough,” if
not correctly.

The point is that although programming
is a solitary, inspiration-based, logical
activity, it is also a group engineering
activity. It is paradoxical, because it is not
the case, and at the same time it is very
much the case, that software development
is:

•

Mathematical, as C. A. R. Hoare has
often said

•

Engineering, as Bertrand Meyer has
often said

•

A craft, as many programmers say

•

A mystical act of creation, as some
programmers claim

Its creation is sensitive to tools; its quality
is independent of tools. Some software
qualifies as beautiful, some as junk. It is a
meeting of opposites and of multiple sets
of opposites.

It is an activity of cognition and expres-
sion done by communicating, thinking
people who are working against eco-
nomic boundaries, conditional to their
cultures, sensitive to the particular indi-
viduals involved.

08_ASD_ch01.fm Page 30 Monday, September 25, 2006 11:05 AM

Software and Games •

31

S

O F T W A R E

A N D

 G

A M E S

Games are not just for children, although
children play games. Games are invented
and used by many people, including nov-
elists, mathematicians, and corporate
strategists.

K

INDS

OF

 G

AMES

If you are sitting around the living room
on a winter’s evening and someone says,
“Let’s play a game,” what could you
play?

You could play charades (play-acting to
uncover a hidden phrase). You could play
tic-tac-toe or checkers, poker or bridge.
You could play hide-and-seek or table
tennis. You could play “When I took a
trip, . . .” a game in which each person
adds a sentence onto a story that grows in
the telling. You could, especially if you
have younger children, end up having a
wrestling match on the living room floor.

Games fall into many categories: zero-
sum, non-zero-sum, positional, competi-
tive, cooperative, finite, and infinite, to
name a few (see Figure 1-1). As a way to
help identify what kind of game software
development could be, let’s look at those
choices.

Zero-sum

games

 are those with two
sides playing in opposition, so that if one
side wins, the other loses. Checkers, tic-
tac-toe, bridge, and tennis are examples.
Software development is clearly not a
zero-sum game.

Non-zero-sum games

are those with mul-
tiple winners or multiple losers. Many of
the games you would consider playing on
that winter’s evening are non-zero-sum

games: poker, parcheesi, and hide-and-
seek. Software development is also a non-
zero-sum game.

Positional games

 are those in which the
entire state of the game can be discovered
by looking at the markers on the board at
that moment. Chess and tic-tac-toe are
examples. Bridge isn’t, because the
played cards don’t show which person
played them.

Figure 1-1

Different categories of games.

Some people try to play software devel-
opment as a positional game, requiring
that the documentation reflect the history

and

current state of the project. They
intend that, should anyone leave the
project, a replacement person will be able
to join the team, read the documentation,
and pick up where the other person left
off. We will come to see that this is not an
effective gaming strategy for software
development.

(Positional games are actually far more
interesting than the simple description
here implies. John Conway, in his book

On Numbers and Games

 (1976), was able to
show how two-person, positional games

08_ASD_ch01.fm Page 31 Monday, September 25, 2006 11:05 AM

32

• Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

form a superset of

all

 numbers: real, imag-
inary, finite, and transfinite. He constructs
the notion of

number

 directly from two-
person, positional games.)

All of these are

competitive

 games, in
which there is a clear notion of winning
and losing.

In

cooperative games

, the people work
either to win together or to continue the
game as long as they consider it worth
playing. The former are

goal-seeking

 coop-
erative games, the latter

non-goal-seeking

cooperative games. Storytelling, playing
jazz, and carpet wrestling are non-goal-
seeking cooperative games. In these latter
games, the players do not seek to end the
game by reaching a goal as fast as possi-
ble. They come to an end only when
enough people get tired of playing and
step out.

Charades, rock climbing, and software
development are goal-seeking cooperative
games (see Figure 1-1 again).

All of these are

finite

 games—games
intended to end.

Infinite

 games are those
in which the players’ primary intention is
to keep the game going. Organizations,
corporations, and countries play these.
Their core purpose is to stay in existence.

A person’s profession is also an infinite
game. The person, wanting to continue
the profession, makes a set of moves that
permit her practice of that profession to
continue.

Often, a person or company aims to
play well on a particular project in order
to get the best position on the next game.
As with the card game appropriately
named “So long, sucker,” these sorts of
teams and alliances change continually
and without notice.

S

OFTWARE

AND

 R

OCK

 C

LIMBING

Of all the comparison partners for soft-
ware development that I have seen, rock
climbing has emerged as the best. It is
useful to have such a comparison partner,
to get some distance from the subject and
open a vocabulary that we can reapply to
software development. Rock climbing is
not a metaphor for software development
but a comparison partner, another mem-
ber of the same class of games.

Let’s see how some of the words and
phrases associated with rock climbing
relate to software development.

Cooperative and goal-seeking

. A team of
rock climbers work together to reach the
top. They will evaluate the climb based on
how well they climbed together and how
much they enjoyed themselves, but the
first measure of success is whether they
reached the top. Reaching the endpoint is
a primary goal, and the game is over
when they reach the top.

(If you are a rock climber, you might
well interrupt me here. For many rock
climbers, the moment of reaching the end
of the climb is a sad one, for it signals the
end of the game. That is true of cooperative
games in general. The game comes to an
end when the endpoint is reached, but if
the players have been enjoying them-
selves, they may not want to stop. Simi-
larly, sometimes software developers do
not want to finish their design, because
then the fun part of their work will be
over.)

Load bearing

. The climbers must actually
support their weight on their hands and
feet. This is a particularly valuable point
of comparison between the two: Software
must run and produce reasonable
responses. While multiple solutions are

08_ASD_ch01.fm Page 32 Monday, September 25, 2006 11:05 AM

Software and Games •

33

possible, not just any solution will do.

Team

. Climbing is usually done in
teams. There are solo climbers, but under
normal circumstances, climbers form a
team for the purpose of a climb.

Individuals with talent

. Some people just
naturally climb better than others do.
Some people will never handle certain
climbs.

Skill-sensitive

. The rock climber must
have a certain proficiency. The novice can
approach only simple climbs. With prac-
tice, the climber can attack more and
more difficult climbs.

Training.

 Rock climbers are continually
training on techniques to use.

Tools

. Tools are a requirement for seri-
ous rock climbing: chalk, chucks, harness,
rope, carabiner, and so on. It is important
to be able to reach for the right tool at the
right moment. It is possible to climb very
small distances with no tools. The longer
the climb, however, the more critical the
tool selection is.

Resource-limited

. A climb usually needs
to be completed by nightfall or before the
weather changes. Climbers plan their
climbs to fit their time and energy budget.

Plan

. Whether bouldering, doing a
single-rope climb, or doing a multiple-
day climb, the climbers always make a
plan. The longer the climb, the more
extensive the plan must be, even though
the team knows that the plan will be
insufficient and even wrong in places.

Improvised

. Unforeseen, unforeseeable,
and purely chance obstacles are certain to
show up on even the most meticulously
planned climbing expeditions unless the
climb is short and the people have
already done it several times before.

Therefore, the climbers must be prepared
to change their plans—to improvise—at a
moment’s notice.

Fun

. Climbers climb because it is fun.
Climbers experience a sense of

flow

 (Csik-
szentmihalyi 1991) while climbing, and
this total occupation is part of what
makes it fun. Similarly, programmers typ-
ically enjoy their work, and part of that
enjoyment is getting into the flow of
designing or programming. Flow in the
case of rock climbing is both physical and
mental. Flow in the case of programming
is purely mental.

Challenging

. Climbers climb because
there is a challenge: Can they really make
it to the top? Programmers often crave
this challenge, too. If programmers do not
find their assignment challenging, they
may quit or start embellishing the system
with design elements they find challeng-
ing (rather like some of the poets
mentioned in the epic poetry project).

Dangerous

. Probably the one aspect of
rock climbing that does not transfer to
software development is danger. If you
take a bad fall, you can die. Rock climbers
are fond of saying that climbing with
proper care is less dangerous than driving
a car. However, I have not heard pro-
grammers express the need to compare
the danger of programming with the dan-
ger of driving a car.

Software development has been com-
pared with many other things, including
math, science, engineering, theater, bridge
building, and law. Although one can gain
insight from looking at any of those activi-
ties, the rock-climbing comparison is the
most useful for the purpose of understand-
ing the factors involved in the activity.

08_ASD_ch01.fm Page 33 Monday, September 25, 2006 11:05 AM

34

• Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

A G

AME

OF

 I

NVENTION

AND

COMMUNICATION

We have seen that software development
is a group game, which is goal seeking, finite,
and cooperative. The team, which consists
of the sponsor, the manager, usage special-
ists, domain specialists, designers, testers,
and writers, works together with the goal
of producing a working and useful sys-
tem. In most cases, team members aim to
produce the system as quickly as possible,
but they may prefer to focus on ease of
use, cost, defect freedom, or liability pro-
tection.

The game is finite because it is over
when the goal is reached. Sometimes deliv-
ery of the system marks the termination
point; sometimes the end comes a bit later.
Funding for development usually changes
around the time the system is delivered,
and new funding defines a new game. The
next game may be to improve the system,
to replace the system, to build an entirely
different system, or possibly to disband the
group.

The game is cooperative because the
people on the team help each other to
reach the goal. The measure of their qual-
ity as a team is how well they cooperate
and communicate during the game. This
measure is used because it affects how
well they reach the goal.

If it is a goal-directed cooperative game,
what does the game consist of? What
constitutes moves in the game?

The task facing the developers is this:
They are working on a problem that they
don’t fully understand, one that lives in
emotions, wishes, and thoughts and that
changes as they proceed. They need to

• Understand the problem space
• Imagine some mechanism that solves

the problem in a viable technology
space

• Express that mental construct in an
executable language, which lacks
many features of expression, to a
system that is unforgiving of mistakes

To work through this situation, they

• Use props and devices to pull
thoughts out of themselves or to gen-
erate new ideas that might help them
understand the problem or construct a
solution

• Leave trails of markers for those who
will come later, markers to monitor
and test their progress and their
understanding, and they use those
markers again, themselves, when they
revisit parts of their work

Software development is therefore a
cooperative game of invention and commu-
nication. There is nothing in the game but
people’s ideas and the communication of
those ideas to their colleagues and to the
computer.

Looking back at the literature of our
field, we see a few people who have artic-
ulated this before. Peter Naur did, in his

08_ASD_ch01.fm Page 34 Monday, September 25, 2006 11:05 AM

Software and Games • 35

1985 article “Programming as Theory
Building,” and Pelle Ehn did, in “Scandi-
navian Design: On Participation and
Skill” (1992) and in his magnificent but
out-of-print book Work-Oriented Design of
Software Artifacts (1988). Naur and Ehn
did this so well that I include those two
articles in near entirety in Appendix B.
Robert Glass and colleagues wrote about
it in “Software Tasks: Intellectual or
Clerical?” (1992), and Fred Brooks saw it
as such a wickedly hard assignment that
he wrote the article “No Silver Bullet”
(1995).

The potential consequences of this
cooperative game of invention and com-
munication are outlined in the remainder
of this chapter. The remainder of the book
examines those consequences.

SOFTWARE AND ENGINEERING

Considering software development as a
game with moves is profitable, because
doing so gives us a way to make mean-
ingful and advantageous decisions on a
project. In contrast, speaking of software
development as engineering or model build-
ing does not help us make such advanta-
geous decisions.

The trouble with using engineering as a
reference is that we, as a community,
don’t know what that means. Without
having a common understanding of what
engineering is, it is hard to get people to
work “more like engineering.” In my
travels, people mostly use the word engi-
neering to create a sense of guilt for not
having done enough of something, with-
out being clear what that something is.

The dictionary is clear as to what “engi-
neering” is: “The application of science and
mathematics by which the properties of matter
and the sources of energy in nature are made
useful to people” (Merriam-Webster’s Colle-
giate Dictionary, Eleventh Edition, 2003).

That definition does not explain what
doing engineering is about. In my
experience, “doing engineering” involves
creating a trade-off solution in the face of
conflicting demands. Another person,
though, wrote to me and said, “A basic con-
cept of engineering is to address problems
in a repeatable and consistent manner.”
This confusing the act of doing engineering
work with the outcome of doing engineering
work is a common mistake.

The outcome of doing engineering work
is the factory, which is run while specific
people watch carefully for variations in
quantity and quality of the items being
manufactured.

The act of doing engineering work is
the ill-defined creative process the indus-
trial engineer goes through to invent the
manufacturing plant design. That pro-
cess is not run with statistical controls,
measuring quantity and quality of out-
put. Like software development, it runs as
a cooperative game of invention and com-
munication, with individual people of
different backgrounds huddling together
to come up with a workable design.

When people say, “Make software
development more like engineering,”
they often mean, “Make it more like run-
ning a plant, with statistical quality con-
trols.” But as we have seen, running the
plant is not the act of doing engineering.

08_ASD_ch01.fm Page 35 Monday, September 25, 2006 11:05 AM

36 • Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

The other aspect of “doing engineer-
ing” is looking up previous solutions in
code books.

Civil engineers who design bridges are
not supposed to invent new structures.
Given a river and a predicted traffic load,
they are supposed to take soil samples
and use the code books to look for the
simplest structure that handles the
required load over the given distance,
building on the soil at hand. They base
their work on centuries of tabulation of
known solutions.

This only marginally fits the current
state of software development. We are
still in the stage where each team’s design
is supposed to be better than the neigh-
bor’s, and the technologies are changing
so fast that few code books exist. As time
goes by, more of these code books will be
available. Today, however, there are still
more variations between systems than
there are commonalities.

Let’s return to considering “engineer-
ing” to mean “thinking and making
trade-offs.” These are appropriate
phrases. We would like our software
developers to think, and to understand
the trade-offs they select. However, these
phrases do not provide guidance in run-
ning projects.

SOFTWARE AND MODEL BUILDING

Many people have advocated model
building over the last decade, including
Ivar Jacobson, who declared, “Software
development is model building.”

Characterizing software development
as engineering may not provide much
guidance for running projects, but charac-

terizing it as model building leads directly
to inappropriate project decisions.

If software development were model
building, then a valid measure of the
quality of the software or of the develop-
ment process would be the quality of the
models, their fidelity to the real world,
and their completeness. However, as
dozens of successful project teams around
the world have told me:

“The interesting part of what we
want to express doesn’t get captured
in those models. The interesting part
is what we say to each other while
drawing on the board.

“We don’t have time to create fancy
or complete models. Often, we don’t
have time to create models at all.”

Where I found people diligently creating
models, software was not getting deliv-
ered. Paying attention to the models
interfered with developing the software.

Constructing models is not the purpose
of the project. Constructing a model is
only interesting as it helps win the game.

The purpose of the game is to deliver
software. Any other activity is secondary.
A model, as any communication, is suffi-
cient, as soon as it permits the next person
to move on with her work.

The work products of the team should
be measured for sufficiency with respect to
communicating with the target group. It does
not matter if the models are incomplete,
drawn with incorrect syntax, and actually
not like the real world if they
communicate sufficiently to the recipients.

08_ASD_ch01.fm Page 36 Monday, September 25, 2006 11:05 AM

A Second Look at the Cooperative Game • 37

As Jim Sawyer so colorfully wrote in an
e-mail discussion about use cases
(Cockburn 2001c):

“. . . as long as the templates don’t
feel so formal that you get lost in a
recursive descent that wormholes its
way into design space. If that starts
to occur, I say strip the little buggers
naked and start telling stories and
scrawling on napkins.”

The effect of the communication is more
important than the form of the communi-
cation.

Some successful project teams have
built more and fancier models than some
unsuccessful teams. From this, many peo-
ple draw the conclusion that more model-
ing is better.

Some successful teams have built fewer
and sloppier models than some unsuc-
cessful teams. From this, other people
draw the conclusion that less modeling is
better.

Neither is a valid conclusion. Modeling
serves as part of the team communication.
There can be both too much and too little
modeling. Scrawling on napkins is suffi-
cient at times; much more detail is needed
at other times.

Understanding how much modeling to
do, and when, is the subject of this book.
Thinking of software development as a
cooperative game that has primary and
secondary goals helps you develop
insight about how elaborate a model to
build or whether to build a model at all.

A SE C O N D LO O K A T T H E CO O P E R A T I V E GA M E

THE COOPERATIVE GAME PRINCIPLE

Software development is a (resource-limited)
cooperative game of invention and communi-
cation. The primary goal of the game is to
deliver useful, working software. The second-
ary goal, the residue of the game, is to set up
for the next game. The next game may be to
alter or replace the system or to create a
neighboring system.

PROGRAMMERS AS COMMUNICATIONS
SPECIALISTS

Saying that “software development is a
cooperative game of invention and com-
munication” suddenly shines a very
different light on the people in our field.

Programmers are typically stereotyped
as noncommunicative individuals who
like to sit in darkened rooms alone with
their computer screens.

This is not a true stereotype, though.
Programmers just like to communicate
about things they like to communicate
about, usually the programs they are
involved in. Programmers enjoy trading
notes about XML-RPC or the difficulties
in mapping object-oriented designs to
relational databases. They just don’t like
joining in the chitchat about things they
consider irrelevant.

There has been a surprisingly high
acceptance of programming in pairs, a
technique in which two people sit

08_ASD_ch01.fm Page 37 Monday, September 25, 2006 11:05 AM

38 • Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

together and co-write their program (Beck
2000). I say “surprising” because many
programmers first predict that they won’t
be able to work that way and then find
they actually prefer it, after trying it for a
week or two (Cockburn, 2001b).

As far as the stereotype is true, it accents
the “invention” portion of the cooperative
game. Programming has, until recently,
been more focused as a game of invention
than as a game of communication. The
interest of programmers to discuss pro-
gramming matters with each other gets in
the way of discussing business matters
with sponsors, users, and business experts.

We can attribute part of the cause for this
to our educational curricula. Imagine some
people thumbing through a university’s
curriculum guide. They see two tracks.
One calls for a lot of reading, writing, and
speaking, and some programming. The
other calls for less reading, writing, and
speaking, and more of working alone,
building artifacts. We can easily imagine
the verbally oriented people selecting the
first curriculum and the less verbally
oriented people selecting the second.

Historically, success in our profession
came from being able to sit alone for long
hours without talking to anyone, staring
at papers or screens. Those who didn’t
like that mode of work simply left the
field. Newer, and particularly the “agile”
methodologies, emphasize communica-
tion more. Suddenly the people who
elected to join a profession that did not
require much interpersonal communica-
tion are being asked to become good at it.

Only the universities can reverse the
general characteristics by creating software

development curricula that contain more
communication-intensive courses.

At the University of Aalborg, in Den-
mark, a new Informatics major was
defined that involves both software
design and communication skill (Mathias-
sen 1999). The department head, Lars
Mathiassen, reports that the difference in
people’s personalities is noticeable: The
new curriculum attracts those who are
willing to accept the communications
load, and the old curriculum attracts those
who have less interest in communication.

To the extent that software develop-
ment really is a game of invention and
communication, we will have to see a
greater emphasis on communication in
the university curricula.

GAMING FASTER

We should not expect orders of magni-
tude improvement in program produc-
tion.

As much as programming languages
may improve, programming will still be
limited by our ability to think through the
problem and the solution, working
through the details of how the described
solution deals with the myriad cases it
will encounter. This is Naur’s “program-
ming as theory building” (Appendix B).

To understand why exponential produc-
tivity growth is not an appropriate expec-
tation, we need only look at two other
fields of thought expression: writing nov-
els and writing laws. Imagine being wor-
ried that lawyers are not getting
exponentially faster at creating contracts
and laws!

08_ASD_ch01.fm Page 38 Monday, September 25, 2006 11:05 AM

A Second Look at the Cooperative Game • 39

In other words, we can expect the game
of invention and the business of
communicating those intentions to a
computer to remain difficult.

MARKERS AND PROPS

Intermediate work products help with
Naur’s “theory building” and Ehn’s “lan-
guage games,” as reminders for our reflec-
tion. They provide shared experiences to
refer to or serve as support structures for
new ideas.

The former need only be complete
enough to remind a person of an earlier
thought or decision. Different markers are
appropriate for different people with
different backgrounds.

The latter act as props to incite new
thoughts.

LASER PRINTER MOCK-UPS

Ehn’s team considered introducing laser
printers to a group that had no experience
with them, back in 1982. They constructed
cardboard mock-ups, not to remind the
participants of what they already knew, but
to allow them to invent themselves into the
future by creating an inexpensive and
temporary future reality to visualize.

These mock-ups are not second-class
items, used only due to some accidental
absence of technology. Rather, they are a
fundamental technique used to help peo-
ple construct thoughts about new situa-
tions. Any work product that helps the

group invent a way forward in the game
is appropriate. Whether they keep the
mock-up around as a reminder of the
discussion is up to them in the playing of
their game.

DIMINISHING RETURNS

Because the typical software development
project is limited in time, people, and
money, spending extra of those resources
to make an intermediate work product
better than it needs to be for its purpose is
wasteful. One colleague expressed it this
way:

DIMINISHING RETURNS

It is clear to me as I start creating use cases,
object models, and the like, that the work is
doing some good. But at some point, it
stops being useful and starts being both
drudgery and a waste of effort. I can’t
detect when that point is crossed, and I
have never heard it discussed. It is frustrat-
ing, because it turns a useful activity into a
wasteful activity.

The purpose of each activity is to move
the game forward. Work products of
every sort are sufficiently good as soon as
they permit the next move.

Knowing this permits a person to more
easily detect the crossover from value
adding to diminishing returns, to hit the
point of being sufficient-to-purpose. That
point has been nicknamed “satisficing”
(Simon 1987, Bach, www.satisfice.com).

08_ASD_ch01.fm Page 39 Monday, September 25, 2006 11:05 AM

40 • Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

SUFFICIENCY FOR THE PRIMARY GOAL

Intermediate work products are not
important as models of reality, nor do
they have intrinsic value. They have
value only as they help the team make a
move in the game. Thus, there is no idea
to measure intermediate work products
for completeness or perfection. An inter-
mediate work product is to be measured
for sufficiency: Is it sufficient to remind or
inspire the involved group?

These three short stories illustrate how
quickly sufficiency can be reached:

SUFFICIENCY IN A MEETING

On a project called “Winifred” (Cockburn,
1998), I was asked partway through the
project to review, for the approximately 40
people on the project, the process we were
following and to show samples of the work
products. The meeting would be held in the
cafeteria.

I copied onto overhead transparencies a
sample of each work product: a use case, a
sequence chart, a class diagram, a screen
definition, a fragment of Smalltalk code, and
so on.

As luck would have it, the overhead pro-
jector bulb blew out just before my little
presentation. As I was wearing a white
shirt that day, I asked everyone to move
closer and held up the sample use case in
front of my shirt.

“I can’t read it!” someone called out, not
too surprisingly, from the back.

“You don’t need to read it,” I said. (The
group laughed.) “All you need to see is that
a use case is paragraphs of text, approxi-
mately like this. There are lots of them
online for you to look at. We write them as
requirements. . .” and I described who was

writing them, who was reading them, and
how they were being used.

I held a sample class diagram in front of
my shirt.

“I can’t read it!” someone called out again.
“You don’t need to read it.” (The group

laughed again.) “All you need to see is that
it is a diagram with boxes and lines. It is
written by . . .” and I discussed the role of
the class diagram in the project.

I went through the work products this
way. In each case, all that the group needed
was a visual image of what one of these
things looked liked, who wrote it, who read
it, and how it served the project. Real
examples were all online and could be
examined by anyone on the project.

This was communication sufficient to the
purpose that people could have a visual
memory of what each product looked
like, to anchor the sentences about how
they were used.

We did have a drawing showing the
process we were following, but as far as I
know, nobody other than the project
managers and I ever looked at it.

SUFFICIENCY OF WORK PRODUCTS

Project “Winifred” was a fixed-time, fixed-
price project costing about $15 million, last-
ing 18 months, with 24 programmers
among 45 people total. We ran it with the
cooperative game principle in mind (the
principle hadn’t been defined back then, but
we knew what we wanted), with as much
close, informal communication as possible.

At the time, use cases weren’t very well
defined, so the writers wrote just a few
paragraphs of simple prose describing what
was supposed to take place, and some of
the business rules involved.

08_ASD_ch01.fm Page 40 Monday, September 25, 2006 11:05 AM

A Second Look at the Cooperative Game • 41

The analyst responsible for a use case
usually went straight from each meeting
with the end users to visit the designer-
programmers, telling them the outcome of
the meeting. The designer-programmers
put their new knowledge directly into their
programs, based on the verbal description.

This worked effectively, because the time
delay from the analyst’s hearing the infor-
mation in the meeting to the programmer’s
knowing of its effect on the program was
just a matter of hours.

There was an odd side effect, however.
Halfway through the project, one of the
programming leads commented that he
didn’t know what purpose the use cases
were supposed to serve. They certainly
weren’t requirements, he said, because he
had never read them.

The point of the story is that the casual
use cases were “sufficient to the task” of
holding the requirements in place. The
communication channels and the shared
understanding between the writers and
readers was rich enough to carry the
information.

CHRYSLER’S ULTRALIGHT SUFFICIENCY

Chrysler’s Comprehensive Compensation
project (C3 1998) ran even lighter than
project Winifred. The 10 programmers sat
together in a single, enormous room, and
the team tracker and three customers
(requirements experts) sat in the next
room, with no door between them.

With excellent intra-team communica-
tions and requirements available continu-
ously, the group wrote even less-than-casual
use cases. They wrote a few sentences on
an index card for each needed system
behavior. They called these “user stories.”

When it came time to start on a user
story, the programmers involved asked the
customer to explain what was needed and
then designed that. Whenever they needed
more information, they asked the nearby
customer to explain. The requirements lived
in the discussion between the participants
and were archived in the acceptance and
unit test suites.

The design documentation also lived in a
mostly oral tradition within the group. The
designers invented new designs using CRC
card sessions (Wilkinson 1995). In a CRC-
card design session, the designers write the
names of potential classes on index cards
and then move them around to illustrate
the system performing its tasks. The cards
serve both to incite new thoughts and to
hold in place the discussion so far. CRC
cards are easy to construct, to put aside,
and to bring back into play, and are thus
perfectly suited for an evolving game of
invention and communication.

After sketching out a possible design
with the cards, the designers moved to the
workstations and wrote a program match-
ing the design, delivering a small bit of sys-
tem function.

The design was never written down. It
lived in the cards, in memories of the con-
versations surrounding the cards, in the unit
tests written to capture the detailed
requirements, in the code, and in the
shared memories of the people who had
worked together on a rotating basis during
the design’s development.

This was a group highly attuned to the
cooperative game principle. Their inter-
mediate work products, while radically
minimalist, were quite evidently sufficient
to the task of developing the software.

08_ASD_ch01.fm Page 41 Monday, September 25, 2006 11:05 AM

42 • Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

The team delivered a new function every
three weeks over a three-year period.

SUFFICIENCY IN THE RESIDUE

Thus far, the topic of discussion has been
the primary goal of the game: delivering
working software. However, the entire
project is just one move within a larger
game. The project has two goals: to
deliver the software and to create an
advantageous position for the next game,
which is either altering or replacing the
system or creating a neighboring system.

If the team fails to meet the primary
goal, there may be no next game, so that
goal must be protected first. If the team
reaches the primary goal but does a poor
job of setting up for the next game, they
jeopardize that game.

In most cases, therefore, the teams
should create some markers to inform the
next team about the system’s require-
ments and design. In keeping with
Naur’s programming as theory building
and the cooperative game principle, these
markers should be constructed to get the
next team of people reasonably close to the
thinking of the team members who com-
pleted the previous system. Everything
about language games, touching into
shared experience, and sufficiency-to-
purpose still applies.

The compelling question now becomes
this: When does the team construct these
additional work products?

One naive answer is to say, “As the
work products are created.” Another is to
say, “At the very end.” Neither is optimal.
If the requirements or designs change
frequently, then it costs a great deal to

constantly regenerate them—often, the
cost is high enough to jeopardize the
project itself. On the other hand, if con-
structing markers for the future is left to
the very end of the project, there is great
danger that they will never get created at
all. Here are two project stories that illus-
trate this point:

CONTINUOUS REDOCUMENTATION

Project “Reel” involved 150 people. The
sponsors, very worried about the system’s
documentation becoming out of date and
inaccurate, mandated that whenever any
part of the requirements, design, or code
changed, all documentation that the change
affected had to be immediately brought up
to date.

The result was as you might expect. The
project crawled forward at an impossibly
slow rate, because the team members
spent most of their time updating docu-
mentation for each change made.

The project was soon canceled.

This project’s sponsors did not pay
proper attention to the economic side of
system development, and they lost the
game.

JUST NEVER DOCUMENTATION
The sponsors of the Chrysler Compre-
hensive Compensation project eventually
halted funding for the project. As the
people left the development team, they
left no archived documentation of their
requirements and design other than the
two-sentence user stories, the tests, and
the program source code.

Eventually, enough people left that the
oral tradition and group memory were lost.

08_ASD_ch01.fm Page 42 Monday, September 25, 2006 11:05 AM

A Second Look at the Cooperative Game • 43

This team masterfully understood the
cooperative game principle during sys-
tem construction but missed the point of
setting up the residue for the following
game.

Deciding on the residue is a question
that the project team cannot avoid. The
team must ask and answer both of these
questions:

• How do we complete this project in a
timely way?

• When do we construct what sorts of
markers for the next team?

Some people choose to spend more money,
earlier, to create a safety buffer around the
secondary goal. Others play a game of
brinksmanship, aiming to reach the pri-
mary goal faster and creating as little
residue as possible, as late as possible.

In constructing responses, the team
must consider the complexity of both the
problem and the solution, the type of peo-
ple who will work on it next, and so on.
Team members should balance the cost of
overspending for future utility against the
risk of underdocumenting for the future.
Finding the balance between the two is
something of an art and is the proper
subject of this book.

A GAME WITHIN A GAME

Although any one project is a cooperative
and finite game, the players are busy
playing competitive and infinite games at
the same time.

Each team member is playing an infi-
nite game called career. These individuals

may take actions that are damaging to the
project-as-game but that they view as
advantageous to their respective careers.

Similarly, the company is playing an
infinite game: its growth. To the company,
the entire project is a single move within
that larger game. In certain competitive
situations, a company’s directors may
deliberately hinder or sabotage a project
in order to hurt a competitor or in some
other way create a better future situation
for the company.

Watching military subcontracting
projects, it sometimes seems that the com-
panies spend more time and money jock-
eying for position than developing the
software. Thinking about any one project
in isolation, this doesn’t seem to be sensi-
ble behavior. If we consider the larger set
of competitive, infinite games the compa-
nies are playing, though, then the players’
behavior suddenly makes more sense.
They use any one project as a playing
board on which to build their position for
the next segment of the game.

The cooperative game concept does not
imply that competitive and infinite games
don’t exist. Rather, it provides words to
describe what is happening across the games.

OPEN-SOURCE DEVELOPMENT

Finally, consider open-source projects.
They are grounded in a different economic
structure than commercial projects: They
do not presume to be resource-limited.

An open-source project runs for as long
as it runs, using whatever people happen to
join in. It is not money-limited, because the
people do not get paid for participating. It is

08_ASD_ch01.fm Page 43 Monday, September 25, 2006 11:05 AM

44 • Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

not people-resource-limited, because any-
one who shows up can play. It is not time-
limited, because it is not run on a schedule.
It just takes as long as it takes.

The moves that are appropriate in a
game that is not resource-limited are quite
naturally different from those in a
resource-limited game. The reward struc-
ture is also different. Thus, it is to be
expected that an open-source project will
use a different set of moves to get through
the game. The creation of the software,
though, is still cooperative and is still a
game of invention and communication.

One may argue that open-source devel-
opment is not really goal seeking. Linus

Torvalds did not wake up one day and
say, “Let’s finish rewriting this UNIX
operating system so we can all go out and
get some real jobs.” He did it first because
it was fun (Torvalds 2001) and then to
“make this thing somewhat better.” In
other words, it was more like kids carpet
wrestling or musicians playing music than
rock climbers striving to reach the top.

While that is true to some degree, it is
still goal-directed in that a person work-
ing on a section of the system works to get
it to “the next usable state.” The people
involved in that section of the system still
work the cooperative game of invention
and communication to reach that goal.

WH A T SH O U L D TH I S ME A N T O ME?

As you practice this new vocabulary on
your current project, you should start to
see new ways of finishing the job in a
timely manner while protecting your
interests for future projects. Here are
some ideas for becoming more comfort-
able with the ideas in this chapter:

Read “Programming as Theory Build-
ing” in Appendix B. Then, watch

• The people on the design team build
their theories

• The people doing last-minute debug-
ging, or program maintenance, build
their theories

• The difference in the information
available to the latter compared with
the former

• How their different theories result in
different programs being produced

• How your understanding of your
problem changes over time and how
that changes your understanding of
the solution you are building

Look around your project, viewing it as a
resource-limited cooperative game of
invention and communication. Ask

• Who are the players in this game?
• Which are playing a finite, goal-

directed team game?
• Which are playing their own infinite

game instead?
• When are my teammates inventing

together, and when they are laying
down tracks to help others get to
where they are? Track this carefully
for five consecutive workdays to see
them move from one to the other.

08_ASD_ch01.fm Page 44 Monday, September 25, 2006 11:05 AM

What Should This Mean to Me? • 45

View the project decisions as “moves” in
a game. Imagine it as a different sort of
game, crossing a swamp:

• Recall the project setup activities as a
preliminary plan of assault on the
swamp, one that will change as new
information emerges about the char-
acteristics of the swamp and the
capabilities of the team members.

• Watch as each person contributes to
detecting deep or safe spots and
builds a map or walkway for other
people to cross.

Reconsider the work products your team
is producing:

• Who is going to read each?
• Is the work product more detailed

than needed for that person, or is it
not detailed enough?

• What is the smallest set of internal
work products your team needs to
reach the primary goal?

• What is the smallest set of final work
products your team needs to produce
to protect the next team?

• Notice the difference between the
two.

Consider running the project as two
separate subprojects:

• The first subproject produces the run-
ning software in as economic a fash-
ion as possible.

• The second subproject, competing for
key resources with the first, produces
the final work products for the next
team.

Think about developing a large, life-
critical, mission-critical system:

• Will that project benefit more from
increasing the invention and com-
munication or from isolating the
people?

• Notice which sorts of projects need
more final work products as their resi-
due and which need fewer work
products.

Finally, notice the larger game within
which the project resides. Notice

• The distractions on your project, such
as giving demos to visitors, taking the
system to trade shows, and hitting
key deadlines

• How those “distractions” contribute
to the larger game in play

• That moves in the larger game
jeopardize your local game

• How you would balance moves in the
project-delivery game against the
moves in the larger game

The point of all this watching and recon-
sidering is to sharpen your sense of
“team,” “cooperative game,” “moves in a
game,” “invention and communication,”
“theory building,” and “sufficiency.”

After watching software development
for awhile, reexamine the engineering
activities around you:

• Identify where they too are coopera-
tive games of invention and commu-
nication and where they are more a
matter of looking up previous solu-
tions in code books.

08_ASD_ch01.fm Page 45 Monday, September 25, 2006 11:05 AM

46 • Chapter 1 A COOPERATIVE GAME OF INVENTION AND COMMUNICATION

When you have achieved some facility at
viewing the life around you as a set of
games in motion, practice

• Adding discipline on your project at
key places

• Reducing discipline at key places
• Declaring, “Enough! This is

sufficient!”

08_ASD_ch01.fm Page 46 Monday, September 25, 2006 11:05 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

